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Introduction



Music Information Retrieval (MIR)

Quelques tâches :

• Détection de tempo/pulsation

• Détection de tonalité

• Détection de hauteur (multiple)

• Détection d’accords

• Identification de l’artiste.

• Reconnaissance des instruments

• Classification en genre

• Classification en ambiance/émotion (moods)

• Détection de reprise

• . . .
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MIR "classique"

Façon “classique” d’aborder le MIR avant l’arrivée du deep
learning :

• Définir "à la main" des descripteurs adaptés à la tâche.

• Utiliser un classifieur "classique" (SVM, Forêt aléatoire, KNN,
GMM...).
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Détection d’accords : descripteurs

• Accord = présence de plusieurs classes de notes simultanées.

• Comment détecter la présence d’une classe de notes ?
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Détection d’accords : descripteurs

Descripteur : chromagramme.

C (N , t) =
K−1∑
k=0

|S(2k f0(N ), t)|

où :

• N ∈ {do, do#, re, re#,mi , fa, fa#, sol , sol#, la, la#, si}
• f0(N ) est la fréquence fondamentale la plus basse considérée

pour la classe de note N
• S(f , t) est une TFCT du signal considéré à la fréquence f et à

l’instant t.
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Détection d’accords : descripteurs

Descripteur chromagramme :
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



12.982813



Détection d’accords : descripteurs

Descripteur chromagramme :
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Détection d’accords : classifieur

“classifieur” temporel :

Modèles de Markov cachés (HMM) pour une détection par trame à
partir des chromas.
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Détection d’instruments : descripteurs

• Instrument principalement défini par son timbre.
• Une caractéristique du timbre est l’enveloppe spectrale et ses

variations.

=⇒ Mel-Frequency Cepstral Coefficients (MFCC) + ∆MFCC
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Détection d’instruments : descripteurs

=

×
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Détection d’instruments : descripteurs

S = H × E

où :

• S : spectre de la note

• H : peigne harmonique

• E : enveloppe spectrale

Donc :
log(S) = log(H) + log(E )

T F (log(S)) = T F (log(H))︸ ︷︷ ︸
hautes fréquences

+ T F (log(E ))︸ ︷︷ ︸
basses fréquences
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Détection d’instruments : descripteurs

MFCC :

Signal d’entrée
Tramage et
Fenêtrage

TFD Module

Echelle MellogTFD inverseMFCC
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Détection d’instruments : classifieur

• Machines à vecteur de support (SVM)

• Modèle de mélange gaussien (GMM)

• K plus proches voisins (KNN)

• Réseau de neurones

• . . .
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Détection de pulsation : descripteurs
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


9.978774



Détection de pulsation : classifieur

Lissage par modèles de Markov cachés (HMM).

Etat du HMM : couple (Tempo, temps depuis la dernière pulsation).

(T ,0) (T ,1) (T ,2) (T ,3) (T ,4) . . .
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Problèmes

Limitations de l’approche classique :

• Besoin de travail humain pour définir les descripteurs.

• Les descripteurs ne sont généralement pas optimaux.

• Les deux étapes sont séparées (pas d’optimisation jointe des
paramètres des descripteurs et des paramètres du classifieur).
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Problèmes

Questions :

• Est-il possible de s’affranchir d’un design manuel des
descripteurs ?

• Est-il possible d’inclure directement le calcul de descripteurs
optimaux dans la phase d’apprentissage ?

• Est-il possible d’apprendre simultanément ces descripteurs et
les paramètres du classifieur ?
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Réseaux de neurones artificiels



Description

Ensemble de modèles d’apprentissage très vaguement inspirés du
fonctionnement du cerveau humain.

• Dans le cerveau, l’information est traitée par un réseau
complexe de neurones inter-connectés

• Les neurones des différentes régions du cerveau sont spécialisés
dans des traitements spécifiques
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Neurone biologique

• Sommation des potentiels
gradués des synapses le long
des dendrites au niveau du
cône d’émergence.

• Génération d’un potentiel
d’action se transmettant le
long de l’axone.

• Potentiel transmis aux
dendrites d’autres neurones
via des synapses au niveau
des terminaisons de l’axone.

• La morphologie et le nombre
des dendrites peuvent varier.

Source : Wikipedia 19



Neurone artificiel

Modèle de neurone artificiel : y = ϕ(
p∑

i=1
wixi + b)

x1

x2

...

xp

∑
ϕ

b

y

w1

w2

wp

xi : entrées du neurone.
wi : poids (variables) associés à chaque entrée
b : biais (−b : seuil d’activation)
ϕ : fonction d’activation
y : sortie du neurone 20



Fonction d’activation

ϕ : fonction d’activation.

Fonctions d’activation courantes :

• Heaviside ∀x ∈ R, H(x) =

{
0 si x < 0
1 si x ≥ 0.

• fonction sigmoïde : σ(x) = 1
1+e−x
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Fonction d’activation

Fonctions d’activation courantes :

• tanh

• Rectified Linear Unit (ReLU) : ReLU(x) =

 x si x > 0

0 sinon
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Couche de neurones

Couche de neurones : yj = ϕ(
p∑

i=1
wjixi + bj), y = ϕ(Wx + b).

x1

x2

...

xp

∑

∑

∑

ϕ

ϕ

ϕ

b1

b2

bq

y1

y2

yq

...

w11
w12

w1p

w21
w22

w2p

wq1
wq2

wqp
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Description

Réseau de neurones : empilement de couches.

x
(0)
1

x
(0)
2

...

x
(0)
q0

f
(1)
1

f
(1)
2

f
(1)
q1

b
(1)
1

b
(1)
2

b
(1)
q1

f
(2)
1

f
(2)
2

f
(2)
q2

b
(2)
1

b
(2)
2

b
(2)
q2

f
(n)
1

f
(n)
2

f
(n)
qn

b
(n)
1

b
(n)
2

b
(n)
qn

y1

y2

yqn

...

24



Description

Réseau de neurones : empilement de couches.

• Entrée : x(0)

• Couches de neurones :
x(k+1) = f (k)(x(k)) = ϕk(W(k)x(k) + b(k)) avec
W(k) ∈ Rqk+1×qk et b(k) ∈ Rqk+1

• y = x(k) = f (n)(x(k−1)) = f (n) ◦ f (n−1) ◦ . . . ◦ f (1)(x(0))

Remarque : les biais b(k) peuvent être intégrés dans les W(k) en
ajoutant une dimension aux vecteurs d’entrée de la couche toujours
égale à 1 : xqk+1 = 1.

W(k)x(k) + b(k) = Wb
(k)xb

(k)
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Théorème d’approximation universelle

• Un réseau de neurones à une seule couche cachée peut
approximer toute fonction continue sur des compactes de Rn

avec des hypothèses faibles sur la fonction d’activation
(fonction croissante, continue, bornée et non constante).

• Un réseau de neurones simple peut représenter une large
famille de fonctions (avec les paramètres appropriés).

26



Théorème d’approximation universelle

Cependant :

• Ne donne pas de résultats sur le nombre de paramètres
nécessaires.

• Ne présage pas de la possibilité d’estimer ces paramètres.

En pratique, une bonne approximation des fonctions est
généralement obtenue plus facilement avec une architecture
profonde (plusieurs couches cachées) qu’avec une architecture large
(nombreux neurones dans une couche).
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Optimisation

On dispose d’une base de données d’apprentissage annotée :
B = {(x1, t1), (x2, t2), . . . , (xN , tN)}

Fonction de coût :

L(θ) =
N∑

n=1

d(tn|fθ(xn))

d caractérise le coût entre la cible tn (vérité terrain) et la sortie du
réseau fθ(xn) pour une entrée donnée xn.

θ représente l’ensemble des paramètres du réseau W(k), b(k) pour
k ∈ {1, . . . , n}

On cherche θb qui minimise L :

θb = argminθL(θ) 28



Optimisation

Fonctions de coût classiques :

• Erreur quadratique moyenne : d(t, y) = ‖t− y‖22
• Similarité cosinus : d(t, y) = 1− s(t, y) = 1− <t,y>

‖t‖2‖y‖2
• Hinge loss : d(t, y) =

∑
i max(0, 1− tiyi )

• Entropie croisée : d(t, y) =
∑

i ti log(yi ) + (1− ti ) log(1− yi )

• . . .
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Optimisation

Comment estimer θb ?

Descente de gradient :

θ ← θ − η∇L(θ)

η est le taux d’apprentissage.

30



Optimisation

En pratique, N grand (∼ 106).

L(θ) =
∑N

n=1 d(tn|fθ(xn)) a beaucoup de termes !

=⇒ le calcul du gradient ne peut se faire sur toute la base
d’apprentissage

Alternative : descente de gradient stochastique. Le gradient est
approximé par le gradient d’un seul terme de la fonction de coût
correspondant à un seul exemple d’entraînement :

Ln(θ) = d(tn|fθ(xn))

Mise à jour de θ :
θ ← θ − η∇Ln(θ)

Bonnes propriétés de convergence vers un minimum local.
31



Optimisation

Variantes :

• Descente de gradient mini-batch : au lieu de calculer le
gradient sur un seul exemple d’entraînement, on le calcule sur
un petit nombre d’exemples. Accélère les calculs
(parallèlisation).

• Gradient avec moment, l’estimation du gradient est une
moyenne pondéré de l’estimation courante et de l’estimation
précédente. Permet d’accélerer la convergence. Permet
éventuellement de sortir de minima locaux. Animation.

• Taux d’apprentissage adaptatif : ADAM, Adadelta, Adagrad,
RMSprop...

Exemple

32

https://distill.pub/2017/momentum/
http://2.bp.blogspot.com/-L98w-SBmF58/VPmICIjKEKI/AAAAAAAACCs/rrFz3VetYmM/s1600/Beale%26amp%3B%23039%3Bs%2Bfunction%2B-%2BImgur.gif


Optimisation

La descente de gradient et ses variantes ne permet pas d’estimer le
minimum global de L :

On obtient des minima locaux qui dans de nombreux cas peuvent
fournir des résultats satisfaisants.
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Optimisation

Calcul du gradient :

• Différences finies

• Algorithme de rétropropagation du gradient

34



Différences finies

∂L(θ)

∂θi
=
L(θ1, ..., θi + h, ..., θn)− L(θ1, ..., θi − h, ..., θn)

2h
+ O(h2)

Fournie une approximation du gradient. Besoin de fixer h. En
pratique, souvent utilisé uniquement pour vérifier une
implémentation d’une autre méthode. 35



Rétropropagation du gradient

Calcul exact : rétropropagation du gradient.

Fonction de coût : L = 1
2
∑

i (ti − yi )
2

Entrée du réseau : x (0)i

Sortie de la couche k : x (k)i = ϕ(k)(h
(k)
i ) = ϕ(k)(

∑
j w

(k)
ij x

(k−1)
j )

Sortie du réseau : yi = x
(n)
i

On s’intéresse à ∂L
∂w

(k)
ij

. On a :

∂L
∂w

(k)
ij

=
∂L
∂x

(k)
i

∂x
(k)
i

∂h
(k)
i

∂h
(k)
i

∂w
(k)
ij

=
∂L
∂x

(k)
i

(ϕ(k))′(h
(k)
i )x

(k−1)
j
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Rétropropagation du gradient

Il faut donc calculer ∂L
∂xi (k)

.

Pour k = n :
∂L
∂xi (n)

= yi − ti

Pour k < n dérivée totale :

∂L
∂xi (k)

=
∑
l

∂L
∂xl (k+1)

∂xl
(k+1)

∂xi (k)

avec :
∂xl

(k+1)

∂xi (k)
= (ϕ(k+1))′(h

(k+1)
i )w

(k+1)
li ≡ δ(k+1)

il

On a donc une relation de récurrence qui lie ∂L
∂xi (k)

aux ∂L
∂xl (k+1)

: on
peut rétropropager le gradient du haut (la sortie) vers le bas
(l’entrée) du réseau.
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Rétropropagation du gradient

Propagation avant :
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Rétropropagation du gradient

Rétropropagation :
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Rétropropagation du gradient

Rétropropagation :
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Descente de gradient mini-batch

On initialise θ à une valeur aléatoire θ0. Puis on itère :

• On tire au hasard un batch de données de taille K

Bn = {(xa1 , ta1), (xa2 , ta2), ..., (xaK , taK )}
• On calcule le gradient de la fonction de coût restreinte à ce

batch (en utilisant la méthode de rétropropagation du
gradient) :

LB(θ) =
K∑

k=1

d(tak |fθ(xak ))

• On met à jour θ :
θ ← θ − η∇θLB

Quand est-ce qu’on s’arrête ?

40



Early stopping

L’erreur sur la base de données d’apprentissage n’est pas révélatrice
de la capacité à généraliser sur de nouvelles données.

On utilise l’état du réseau pour lequel la généralisation est la
meilleure (coût de validation le plus faible).

41



Classification

• Classification multiclasse multilabel : sortie cible t ∈ {0, 1}Nc

• Classification multiclasse monolabel : sortie cible
C ∈ {1, . . . ,Nc}.
En pratique, encodage one-hot : t ∈ {0, 1}Nc avec [t]C = 1 et
[t]k = 0 pour k 6= C

42



Classification monolabel

sortie cible C ∈ {1, . . . ,Nc}.

La fonction f estimée par le réseau de neurones est considérée
comme une estimation de la probabilité d’observer la classe
considérée :

[fθ(x)]k = P(c = k |x,θ)

On doit donc avoir
∑

k [fθ(x)]k = 1 et 0 ≤ [fθ(x)]k ≤ 1.

On choisit généralement la fonction softmax comme fonction
d’activation de la dernière couche cachée :

softmax(z)j =
ezj∑K
k=1 ezk

(Remarque : agit sur l’ensemble du vecteur d’entrée et non sur une
valeur individuelle).

43



Classification monolabel

On cherche alors à maximiser la log-vraisemblance sur l’ensemble
d’apprentissage annoté S = {(x1, c1), (x2, c2), . . . (xN , cN)}.

L(θ) =
N∑

n=1

log(P(c = cn|xn,θ))

44



Classification monolabel

Fonction de coût : entropie croisée catégorielle.

Encodage one-hot :

[t]k =

 1 si c = k

0 sinon

L(θ) =
∑
n

log(P([tn]cn |xn,θ))

=
∑
n

∑
k

[tn]k log(P([tn]k |xn,θ))

45



Classification monolabel

Décision :

Une fois le réseau entraîné (paramètre optimal θb), on peut obtenir
pour tout entrée x, une probabilité d’observer la classe k :

P(c = k|x,θb) = [fθb
(x)]k

La classe C prédite est alors celle avec la plus grande probabilité :

C = argmaxkP(c = k|x,θb)

46



Classification multilabel

Sortie cible t ∈ {0, 1}Nc

• La fonction f estimée par le réseau de neurones est
généralement considérée comme une estimation de la
probabilité de présence de la classe considérée :

[fθ(x)]k = P(tk = 1|x,θ)

• Dans le cas multilabel, les probabilités pour les différentes
classes ne sont pas directement liées : seule la contrainte
0 ≤ [fθ(x)]k ≤ 1 doit être vérifiée (pour tout k).

47



Classification multilabel

• On utilise généralement la fonction sigmoïde comme fonction
d’activation de la dernière couche : f (x) = 1

1+e−x

• Fonction de coût : somme des log-vraisemblance pour chaque
classe ≡ entropie croisée binaire.

L(θ) =
∑
n

∑
k

[tn]k log(P([tn]k |xn,θ))

+ (1− [tn]k) log(P(1− [tn]k |xn,θ))

48



Choix de complexité du modèle

L’erreur sur la base de données d’apprentissage n’est pas révélatrice
de la capacité à généraliser sur de nouvelles données.
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Choix de complexité du modèle

Source : The Elements of statistical learning.
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Sur-apprentissage

Contrôle du sur-apprentissage :

• Partitionnement de la base de données en base
d’entraînement, de validation (choix de modèle) et de test
(estimation de la performance du système).

• Validation croisée

51



Sur-apprentissage

Réduction du sur-apprentissage :

• Réduire le nombre de paramètres (nombres de couches,
nombre de paramètres par couche).

• Régularisation, Dropout.

• Augmenter la taille de la BDD d’entraînement.

• Early stopping

52



Dropout

A l’entraînement, on désactive aléatoirement certains neurones avec
une probabilité p. Permet de combiner (et de rendre indépendant)
l’apprentissage de nombreux sous-réseaux de manière efficace.

Source : Srivastava, Nitish, et al. ”Dropout : a simple way to prevent neural networks from overfitting”,
JMLR 2014
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Architectures de réseaux de
neurones



Couches convolutives

• Poids : tenseur d’ordre 3, W ∈ RK×F×T . K noyaux wk,f ,t .
• Entrée : xc,f ,t
c canaux, f , t dimensions spatiales (images), ou
fréquence/temps (audio).
• Sortie :

yk,f ,t =
C−1∑
c=0

F−1∑
p=0

T−1∑
q=0

wk,p,qxc,f−p,t−q

Source : Deep learning for complete beginners 54

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html


Couches convolutives

Une couche convolutive est une couche complètement connectée
avec des contraintes particulières :

• De nombreux poids sont nuls : connectivité locale.

• Poids partagés entre les connexions

Intérêt :

• Réduit le nombre de paramètres

• Connectivité locale : encode des relations de proximité.

55



Max Pooling

Principe : sous-échantillonage.

• MP(yk,f ,t) = maxp∈[[bf cδf ,bf cδf +δf [[,q∈[[btcδt ,btcδt+δt [[xk,p,q où
bf cδf = b fδf cδf
• Le max peut-être remplacé par une autre fonction de pooling :

moyenne, médiane, minimum, variance...

Source : http ://cs231n.github.io/convolutional-networks/
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Max Pooling

Convolution + Max pooling =⇒ Invariance par translation locale :

∗ MP
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Max Pooling

Convolution + Max pooling =⇒ Invariance par translation locale :

∗ MP
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Réseau convolutif

Source : Wikipedia
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https://fr.wikipedia.org/wiki/R%C3%A9seau_neuronal_convolutif


Réseau convolutif

Filtres première couche (entrée : images).

Source : Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks
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Réseau convolutif

Filtres première couche (entrée : forme d’onde audio).

Source : Dieleman et al. End-to-end learning for music audio

En pratique : on travaille généralement avec une représentation
type spectrogramme en entrée.
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Réseau convolutif

Intuition : la combinaison des filtres
permet d’apprendre des objets de plus
en plus haut niveau.

• Couche 1 : s’active sur des
contours simples

• Couche 2 : s’active sur des parties
d’objet (oeil, nez, bouche...)

• Couche 3 : s’active sur des objets
complets (visages)

En pratique, un peu plus complexe : pas
facile d’intérpreter le comportement du
réseau.

Source : Honglak Lee et al. Convolutional Deep
Belief Networks for Scalable Unsupervised Learning
of Hierarchical Representations
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Réseaux récurrents

• Traitement de séquences

• Réseau répété à chaque étape temporel avec des connexions
récurrentes entre chaque étape.

Source : Wikipedia
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https://fr.wikipedia.org/wiki/R%C3%A9seau_de_neurones_r%C3%A9currents


Réseaux récurrents

Permet de nombreuses combinaisons entrée/sortie.

Source : Andrej Karpathy
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Réseaux récurrents

Problème : réseau très profond =⇒ vanishing gradient.

Solution : bloc à mémoire LSTM
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Réseaux récurrents : applications

Beat tracking : le réseau apprend une fonction d’onset.

Source :
S. Bock et al. A Multi-model Approach To Beat Tracking Considering Heterogeneous Music Styles
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Transformeurs

Architecture permettant de modèliser des séquences :

• très utilisée en NLP, notamment dans les Large Language
Models (e.g. ChatGPT)

• basée sur les mécanismes d’auto-attention
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Mécanisme d’attention

Calcul d’un poids mesurant l’utilité des entrées pour estimer la
sortie. Le modèle fait sa prédiction en se concentrant sur les
"entrées importantes".

Source : blog.floydhub.com
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Mécanisme d’attention

• Séquence de vecteurs proxi z1
q , . . . , z

T
q et z1

k , . . . , z
T
k

(dépendant de l’entrée v t et potentiellement de l’état caché au
temps précédent).

• Fonction de similarité s(z tq, z
t′
k ).

• Construction de l’attention au temps t :

α(t) = Softmax(s(z tq, z
1
k ), s(z tq, z

2
k ) . . . , s(z tq, z

T
k ))

• Sortie du mécanisme d’attention :

ut =
T∑
t=1

α(t)v t
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Transformeurs

Unité de base du transformeur : Tête d’auto-attention à produit
scalaire

Source : Wikipedia

Chaque élément de la séquence est comparé avec toute la séquence.

Généralement, plusieurs têtes d’attention encodent des relations
différentes entre les éléments de la séquence d’entrée.
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Transformeurs

Permet de s’affranchir des problèmes des RNN :

• permet de modéliser les dépendances à long terme.

• pas de phénomène de vanishing gradient.

• meilleure parallélisation que les RNN.

Remarque : perte de la notion d’ordre dans la séquence,
généralement compensée par l’utilisation de positional embeddings.
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Machines de calcul et librairies

Architecture convolutive/transformeurs : calcul massivement
parallèlisable, opérations simples (multiplication/addition
floattante).

Utilisation de processeurs graphiques (GPU) à plusieurs milliers de
coeurs.

Librairies :

• TensorFlow/Keras (Google)

• Torch/PyTorch (Facebook)

• Caffe

• MxNet

• . . .
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Deep Learning pour la
classification musicale



Analogie descripteurs classiques/architectures profondes.

MFCC :

Signal d’entrée
Tramage et
Fenêtrage

TFD Module

Echelle MellogTFD inverseMFCC

Transformation
linéaire

Non linéarité
par coefficient
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Analogie descripteurs classiques/architectures profondes.

MFCC :

Signal d’entrée
Tramage et
Fenêtrage

TFD Module

Echelle MellogTFD inverseMFCC

Transformation
linéaire

Non linéarité
par coefficient

Wx ϕ
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Analogie descripteurs classiques/architectures profondes.

Le calcul des MFCC est un réseau de neurones ! appliqué trame par
trame au signal d’entrée, avec :

• Pour la TFD, W est une matrice de sinusoïdes complexes.

• Pour la transformation en échelle Mel, W est une matrice de
filtres de Mel.

• Pour la TFD inverse, W est à nouveau une matrice de
sinusoïdes complexes.
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Analogie descripteurs classiques/architectures profondes.

Chromagramme :

C (N , t) =
K∑

k=1

|S(2k f0(N ), t)|=
F∑

f=0

12k f0(N )(f )|S(f , t)|

• TFD : transformation linéaire

• Module : fonction d’activation non-linéaire

• Somme sur k : transformation linéaire, avec W une matrice à
12 lignes (12 notes), dont la ligne N a ses coefficients non
nuls en les 2k f0(N )

Le calcul des chromas peut aussi être vu comme un réseau de
neurones.
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Analogie descripteurs classiques/architectures profondes.

Idem calcul des onsets pour la détection de pulsations :

• Valeur absolue, rectification demi-onde (=ReLU) : fonction
non-linéaire scalaire.

• filtrage passe-bas, dérivée : transformation linéaire
(convolutive).
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Analogie descripteurs classiques/architectures profondes.

Idée :

• Remplacer le calcul des descripteurs par un réseau de neurones
(par exemple un réseau convolutif).

• Utiliser un réseau de neurones simple comme classifieur.

Intérêt :

• le système peut être optimisé globalement.

• plus besoin de construire des descripteurs à la main.

• descripteurs optimaux (pour peu qu’on arrive à résoudre le
problème d’optimisation).

Limitation : nécessite beaucoup de données pour fonctionner.
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Deep learning pour la classification de musique
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Deep learning pour la classification de musique

Sortie (multilabel ou monolabel) :

• Genre

• Mood

• Décennies

• Instruments de musique

• Qualité audio (MP3/non compressé)

• . . .
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Genre

Monolabel sur des genres principaux : genre GTzan

blues

classical

country

disco

hiphop

jazz

metal

pop

reggae

rock
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Genre

Multilabel avec un large ensemble de tags : genre Discogs
aor, abstract, acid, acid jazz, acoustic, african, afro-cuban, afro-cuban jazz, afrobeat, alternative rock,
ambient, arena rock, art rock, avant-garde jazz, avantgarde, ballad, baroque, bass music, beat, big band,
big beat, black metal, bluegrass, blues rock, bolero, boom bap, bop, bossa nova, bossanova, brass band,
breakbeat, breakcore, breaks, brit pop, broken beat, cajun, celtic, chanson, chicago blues, classic rock,
classical, comedy, conscious, contemporary, contemporary jazz, contemporary r&b, cool jazz, country,
country blues, country rock, crunk, dance-pop, dancehall, dark ambient, darkwave, death metal, deep
house, delta blues, disco, dixieland, doom metal, downtempo, drone, drum n bass, dub, dub techno,
dubstep, ebm, early, easy listening, electric blues, electro, electro house, emo, ethereal, euro house,
eurodance, europop, experimental, field recording, flamenco, folk, folk metal, folk rock, free
improvisation, free jazz, freestyle, funk, funk metal, fusion, future jazz, g-funk, gabber, gangsta, garage
rock, glam, glitch, goa trance, gospel, goth rock, gothic metal, grime, grindcore, grunge, gypsy jazz,
happy hardcore, hard bop, hard house, hard rock, hard trance, hardcore, hardcore hip-hop, hardstyle,
heavy metal, hip hop, honky tonk, horrorcore, house, idm, impressionist, indian classical, indie pop, indie
rock, industrial, instrumental, italo-disco, italodance, jazz-funk, jazz-rock, jazzy hip-hop, jungle, klezmer,
krautrock, latin, latin jazz, leftfield, lo-fi, lounge, mpb, math rock, medieval, melodic death metal,
melodic hardcore, metalcore, minimal, mod, modern, modern classical, modern electric blues, musical,
musique concrte, neo soul, neo-classical, neo-romantic, neofolk, new age, new wave, noise, nordic,
novelty, nu metal, oi, opera, pacific, parody, poetry, pop punk, pop rap, pop rock, post bop, post rock,
post-hardcore, post-modern, post-punk, power metal, power pop, prog rock, progressive house,
progressive metal, progressive trance, psy-trance, psychedelic rock, psychobilly, punk, ragga hiphop,
ragtime, reggae, reggae-pop, religious, renaissance, rhythm & blues, rhythmic noise, rnb/swing, rock &
roll, rockabilly, rocksteady, romani, romantic, roots reggae, rumba, salsa, samba, schlager, score, screw,
shoegaze, ska, sludge metal, smooth jazz, soft rock, son, soul, soul-jazz, soundtrack, southern rock,
space rock, speed metal, spoken word, stoner rock, surf, swing, symphonic rock, synth-pop, tango, tech
house, tech trance, techno, theme, thrash, thug rap, trance, tribal, trip hop, viking metal, vocal, blues,
brass & military, children’s, classical, electronic, folk, world, & country, funk / soul, hip hop, jazz, latin,
non-music, pop, reggae, rock, stage & screen
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Genre

Evaluation : Quand de si nombreux tags sont utilisés, on n’est
généralement plus très intéressé par une accuracy (beaucoup de
tags manquant, erreur d’annotations, vérité terrain floue...).

• Métrique de ranking : Mean Average Precision (aire sour la
courbe Recall/Precision).

• AUC : Aire sous la courbe TPR/FPR.
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Mood

Multilabel :

Happy, Sad, Funny, Humorous, Euphoric, Uplifting, Motivational, Optimistic, Positive, Terrifying,

Horror, Scary, Shocking, Frightening, Blue, Poignant, Depressing, Heartbroken, Melancholy, Sad,

Hopeful, Nostalgic, Light, Soft, Sentimental, Romantic, Neutral, Agitated, Angry, Passionate,

Aggressive, Dramatic, Violent, Intense, Peaceful, Quiet, Introspective, Relaxed, Spiritual, Calm, Dreamy,

Sacred, Dignified, Thoughtful, Serious, Solemn, Concerned, Emotional, Noble, Nervous, Supernatural,

Evil, Tense, Fearful, Creepy, Anxious, Barren, Spooky, Eerie, Strange, Mysterious, Weird, Cold,

Confused, Suspenseful, Disturbing, Jittery, Dark, Restless, Confident, Strong, Heroic, Prestigious,

Majestic, Powerful, Energetic, Triumphant, Epic, Exciting, Martial, Exhilarating, Victorious,

Adventurous, Determined, Courageous, Relentless, Erotic, Sultry, Sexy, Rollicking, Upbeat, Celebratory,

Feel Good, Cheerful, Bright, Bouncy, Boisterous, Excited, Perky, Fun, Joyous, Lighthearted, Playful. . .
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Mood

Monolabel : MIREX clusters :

Cluster_1 : passionate, rousing, confident, boisterous, rowdy

Cluster_2 : rollicking, cheerful, fun, sweet, amiable/good natured

Cluster_3 : literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster_4 : humorous, silly, campy, quirky, whimsical, witty, wry

Cluster_5 : aggressive, fiery,tense/anxious, intense, volatile,visceral
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Mood

Russell’s Circumplex model.

Valence/Arousal/Dominance

Source : Georgios Paltoglou and Michael Thelwall Seeing Stars of Valence and Arousal in Blog Posts

2013. 84



Deep learning pour la classification de musique

Entrée :

• Descripteurs classiques (Chroma, MFCC, . . . ).

• Spectrogramme.

• Spectrogramme en échelle Mel (plus compact).

• Transformée à Q-constant (échelle log).

• Forme d’onde : nécessite beaucoup de données.

Pré-traitement courant :

• log : réduit la dynamique des spectrogrammes.

• Centrage et réduction.
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Deep learning pour la classification de musique

Convolution 2D comme en image ? La dimension temporelle et la
dimension fréquentielle n’ont pas la même signification.

Invariance par translation dans le domaine temporel mais pas dans
le domaine fréquentiel.

Alternative :

• CQT : invariance partielle par translation

• Convolution 2D locale (par bande de fréquence).
• Convolution 1D.
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Deep learning pour la classification de musique

Convolution 2D comme en image ? La dimension temporelle et la
dimension fréquentielle n’ont pas la même signification.

Invariance par translation dans le domaine temporel mais pas dans
le domaine fréquentiel.

Alternative :

• CQT : invariance partielle par translation

• Convolution 2D locale (par bande de fréquence).

• Convolution 1D.

En pratique pas forcément un problème.
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Deep learning pour la classification de musique

Dimension temporelle variable / sortie fixe :

• entrée de longueur fixe, puis combinaison des sorties a
posteriori.

• pooling (max, min, moyenne, variance...) temporelle.

• dernière sortie d’une couche récurrente.

• mécanisme d’attention.
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Manque de données : Augmentation de données

L’apprentissage des réseaux de neurones nécessite de grandes
quantités de données annotées. Comment augmenter la taille de la
base de données artificiellement ?

Augmentation de données : transformations ne modifiant pas les
annotations.

Base de données annotées {(x1, c1), (x2, c2), . . . , (xN , cN)},
ensemble de transformation {τ1, . . . , τK}.

Nouvelle base de données :

{(x1, c1), (τ1(x1), c1), . . . , (τK (x1), c1),

(x2, c2), (τ1(x2), c2), . . . , (τK (x2), c2),

. . .

(xN , cN), (τ1(xN), cN), . . . , (τK (xN), cN)}
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Manque de données : Augmentation de données

Exemples de transformation :

• Translation temporelle

• Modification de hauteur (pitch-shifting)

• Etirement/contraction temporel (time-stretching)

• Egalisation

• Compression de dynamique

• Dégradation de qualité

• Ajout de bruit

• Réverberation

• . . .
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Manque de données : Apprentissage par transfert

L’apprentissage des réseaux de neurones nécessite de grandes
quantités de données annotées. Que faire quand les données
annotées manquent ?

Apprentissage par tranfert : si on dispose d’un réseau entraîné sur
une tâche proche, on peut éventuellement transférer la
connaissance de cette première tâche à la tâche qui nous intéresse :

• Initialiser les paramètres des couches basses du réseau
(couches "descripteurs")

• Fixer ces paramètres, ou les contraindre à ne pas trop
s’éloigner de leur initialisation.
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Manque de données : Apprentissage auto-supervisé

Apprentissage auto-supervisé (self-supervised) : tâche pretexte avec
les données brutes sans annotations, puis transfert vers la tâche
finale.

• plus besoin d’annotations !
• la tâche prétexte doit être bien conçue.

Srce : Noroozi et al. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles" 2016 91



Manque de données : Apprentissage auto-supervisé

unlabeled
audio
mixture

percussive
part

non-percussive
part

variable-Q transform
and decibel mapping

variable-Q transform
and decibel mapping

convolutional
neural network

convolutional
neural network

maximize
cosine similarity

no lag lag

minimize
cosine similarity

Srce : Desblancs et al. "Zero-Note Samba : Self-Supervised Beat Tracking" 2022 92



Partionnement entraînement/test

Attention aux variables "latentes" connues pouvant entraîner un
sur-apprentissage "caché" :

• Locuteur pour des applications de reconnaissance automatique
de la parole.
• Artiste/album/morceau pour de la classification en

genre/mood...
• Instrument de musique pour des applications de transcription

sur partition.

Exemple : Si des morceaux d’un même artiste apparaîssent dans la
base d’entraînement et la base de test, il est possible que le
classifieur s’appuie partiellement sur l’identification de l’artiste pour
déterminer le genre. Les résultats obtenues peuvent alors être un
trop optimiste.
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Apprentissage multimodal

L’audio apporte de l’information mais d’autres sources sont
également exploitables :

• Images (couvertures d’albums, photos d’artistes...)

• Texte (paroles, avis/commentaires utilisateur).

• Données d’usage (organisation en playlist, session d’écoutes).
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Apprentissage multimodal : couverture d’albums
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Apprentissage multimodal : couverture d’albums
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Apprentissage multimodal : couverture d’albums
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Apprentissage multimodal : couverture d’albums
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Apprentissage multimodal : avis

"On parle de quelqu’un qui avant de penser à sois-même pense
d’abord à ces fans en leur faisant cadeaux d’album. Oui pour
certains <Nom de l’artiste> ces pas chanter ni rapper mais qu’est
ce qu’on s’en fiche les goûts et les couleurs ne se discutent pas"
(commentaire Amazon)
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Apprentissage multimodal : avis
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d’abord à ces fans en leur faisant cadeaux d’album. Oui pour
certains Jul ces pas chanter ni rapper mais qu’est ce qu’on s’en
fiche les goûts et les couleurs ne se discutent pas" (commentaire
Amazon)
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Apprentissage multimodal : avis

"Le premier atout de cette intégrale se situe dans la direction
d’orchestre d’Antal Dorati, vive, énergique, et même percutante,
dès "L’Ouverture" de l’opéra et lors des transitions orchestrales
entre les Actes. Il sait aussi parfaitement mener les différents
chœurs, masculins ou féminins : ainsi, au début de l’Acte I (marins
norvégiens), puis à celui de l’Acte II ("Chœur des Fileuses"), et
enfin au tout début de l’Acte III (chœurs des marins et des jeunes
femmes norvégiens, "tuilés" avec ceux des marins hollandais)."
(commentaire Amazon)
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Apprentissage multimodal : paroles

"No one of them is innocent
Smell the stench of their fear
Sequestred in the dark
Humiliation and torture
Destroy the human rights
Desecrate the creation of god
And when you lose the taste
When supplies don’t your eyes anymore
End your misery life
Suicide for Satan"

From Destroy your life for Satan by Mütiilation

101

http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332


Apprentissage multimodal : paroles

"No one of them is innocent
Smell the stench of their fear
Sequestred in the dark
Humiliation and torture
Destroy the human rights
Desecrate the creation of god
And when you lose the taste
When supplies don’t your eyes anymore
End your misery life
Suicide for Satan"

From Destroy your life for Satan by Mütiilation

101

http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332
http://www.deezer.com/track/80123332


Apprentissage multimodal : paroles

"Je n’ai aucune peine, j’te nique ta race
Dans les veines je n’ai que de la glace
J’veux savoir c’que ça fait de prendre leur place
Je m’entraîne à sourire devant ma glace
La capitale dans le barillet
Tout arrive de Colombie akhi
J’rappe sale tellement avarié
Que même ces putains de rats attrapent la diarrhée
J’encule Brandon et Dylan
Si ces pédés crament au napalm j’veux la palme
Je m’en bats les couilles de qui rend l’âme
J’trempe mes cookies dans tes larmes"

From Zoo by Kaaris
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Apprentissage multimodal

Fusion de modalités :

• Early fusion : fusion
des features.

• Late fusion : fusion
des sorties des
classifieurs.

• Deep learning permet
une fusion mi-niveau.
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Apprentissage multimodal

Fusion de modalités :

• Early fusion : fusion
des features.

• Late fusion : fusion
des sorties des
classifieurs.

• Deep learning permet
une fusion mi-niveau.

Source : Delbouys et al. Music Mood Detection Based On Audio And
Lyrics With Deep Neural Net
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Conclusion



Deep Learning

• Basé sur un empilement de couches de neurones artificiels.

• Peut modéliser de nombreux types de fonction complexe.

• Etat de l’art pour de nombreuses tâches de MIR.
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Limites du Deep Learning

• Nécessite une grande quantité de données annotées.

• Nécessite une forte puissance de calcul pour l’apprentissage.

• La compréhension des systèmes profonds est encore mal
maîtrisée.

• Difficile de proposer des améliorations sur un système existant.

• Pas encore état de l’art en "end-to-end" pour certaines tâches :
exemple détection de pulsation et de premier temps de mesure.
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