Introduction to Dynamical Systems

Two-dimensional iterated maps (2): S/U manifolds.
October 1, 2015

Let the $2 \mathrm{D} \operatorname{map} f(x, y)=(x+y \bmod 1, x+2 y \bmod 1)$
Q1. Describe the unstable manifold of $(0,0)$. Show that the stable and unstable manifolds meet at right angles.

Let the 3D map $f(x, y, z)=\left(x / 2, y / 2,2 z-x^{2}-y^{2}\right)$. The origin is the only fixed point.

Q2. Show that the unstable manifold $U(0)$ is the z-axis.
Q3. Show that $S(0)$ is the paraboloid $\left\{(x, y, z): z=\frac{4}{7}\left(x^{2}+y^{2}\right)\right\}$.
Let the Henon map: $f(x, y)=\left(a-x^{2}+b y, x\right)$.
Q4. Compute f^{-1} (what is the condition on a and b, if any?)
Q5. Write a program that computes numerically the stable and unstable manifolds as follows:

- first, choose a saddle point p of the Henon map and compute its eigenvectors ; let V^{u} denote the vector tangent to the unstable manifold $U(p)$ associated with eigenvalue u;
- then choose a point M on the line through V^{u} so that M and $N=f(M)$ are within 10^{-6} of p (if the eigenvalue $u<0$, use f^{2} instead of f, because then it is a flip-saddle) ;
- then apply f to the segment $J=[M N]$; this involves choosing a grid of points $M=M_{0}, M_{1}, M_{2}, \ldots, M_{n}=N$ along the segment J. Let $N_{1}=f\left(M_{1}\right)$. The rule used here is that the distance $\mid N_{1}-$ $N \mid$ should be less than 10^{-3}. Otherwise move M_{1} closer to M. Repeat this procedure when choosing each grid point (continue with N_{2} so that $\left|N_{1}-N_{2}\right|<10^{-3}$, and so on).
- Using this method, calculate f, f^{2}, \ldots, f^{n} of J (plot continuously as you progress).

