
Beautiful User Interfaces with JavaFX
Systémes d’acquisition — 3EVE

S. Reynal

September 20, 2021

The current document is dedicated to giving you a small and quick in-
sight into the JavaFX API, an extra Java library that will allow you to build
beautifully styled user interfaces (UI). JavaFX has become a neat, modern
and efficient replacement to the Swing API (the JFrame, JButton, etc. com-
ponents), an API that surfaced more than ten years ago as an attempt to
create the first Java cross-platform widget1 kit and a replacement to the
native AWT widget kit.

If you have been used to Swing components, you might find the philos-
ophy behind JavaFX quite familiar at first, but this is merely the tip of the
iceberg! JavaFX can do much more than Swing does, from fluid animations
to CSS style sheet based styling to 3D shapes and transforms. Above all,
JavaFX is hardware accelerated on most platform, either through DirectX
on Windows, or through OpenGL on OS X or Linux.

Building a User Interface in JavaFX revolves mostly around creating a
component tree made of nodes (branches and leaves), where leaves can be
widgets (buttons and co), shapes (lines, rectangle, etc), text (with tons of
styling options), images, sound or videos, charts and tables, and branches
are actually groups thereof (e.g., menu, toolbars, complex drawings), see
Figure 1. There are also special nodes that support dynamic processing, like
transforms (rotations, translations) and animation effects (e.g., you want to
make a 3D box rotate for 3 seconds), and every visible node can have an event
listener attached to it, just as was already the case with Swing. Finally, every
component in the tree supports a CSS based styling scheme, with the usual
”classes” and ”id” parameters of CSS styling. This makes it possible to split
appearance issues from functionality issues, and have someone specialized
in graphic design take care of the UI appearance while developers are busy
designing the interface itself.

1 Installing things

There are three softwares to be installed:

1A ”widget” is a component of a user interface like a button, a menu or a toolbar.

1

Figure 1: JavaFX component graph: the upper node is the root of the tree.
It has three children, a Shape3D, a Shape2D, and a parent of a ”Region”, a
group of nodes which itself aggregates together a Pane and a Control (e.g.,
a Button or a TextField). Applying a transform to a Region applies the
transform to each of its children in turn, so that this is very efficient in
terms of performance.

2

• A recent version of the Java Development Kit (aka JDK): you’ll find it
at https://www.oracle.com/java/technologies/downloads/ ; take
the most recent version that matches your OS and install.

• Eclipse IDE: go to eclipse.org, go to ”Download” and download
the Eclipse installer ; run the installer and choose ”Eclipse for Java”.
Launch Eclipse and pickup the proposed (automatically created) workspace
folder or create a new one if the proposed one doesn’t fit your needs
(this folder will contain all your Java projects).

• JavaFX libraries: go to https://openjfx.io/ and click ”Download”
on the main page (scroll down a bit), this will take you to a dedicated
website (aka Gluon) where here again you’ll have to download a version
that matches your platform. Uncompress to Eclipse workspace.

Then from inside Eclipse create a new Java project, and ”link” the
JavaFX libraries to your project :

• right click on your Project name

• select ”Properties”, then ”Java Build Path”, then ”Libraries”, then ”Add
External JARs...”

• add the following libraries (they should have been uncompressed to
Eclipse workspace folder) : javafx.base.jar, javafx.control.jar,
javafx.graphics.jar

(you’ll find alternative tips at https://www.javatpoint.com/javafx-with-eclipse)

2 A basic application

Writing a JavaFX application begins with overriding the start() method of
the javafx.application.Application class. The argument of the start()
method is a Stage object which represents the primary stage of the UI.
You can have several stages: these simply correspond to distinct windows.
Every Stage has a title (which is displayed in the window upper bar) and
a Scene object attached to it, where the Scene is somehow the ”top” of the
component UI tree. A Scene has a dimension, a location on screen, and
contains a root component (a BorderPane in the example given in Fig. 2)
which can itself have children if it is a branch node (containers are always
branch nodes so this is ok). Finally, a Scene can have one or several CSS
style sheets attached to it.

3 Running a JavaFX app from the command line

Open a shell (or a ”Command” or a ”Terminal”, depending on your OS),
and go to Eclipse workspace, then to your Project folder. Change to the

3

https://www.oracle.com/java/technologies/downloads/
eclipse.org
https://openjfx.io/
https://www.javatpoint.com/javafx-with-eclipse

import j ava fx . animation . App l i ca t ion ;

pub l i c c l a s s Main extends Appl i ca t ion {

pub l i c void s t a r t (Stage primaryStage) {
t ry {
BorderPane root = new BorderPane () ;
root . setTop (createToo lbar ()) ;
root . setBottom (c r ea t eS ta tu sba r ()) ;
root . s e tCenter (createMainContent ()) ;
Scene scene = new Scene (root , 8 0 0 , 4 0 0) ;
scene . g e t S t y l e s h e e t s () . add (ge tC la s s () .

getResource (”a p p l i c a t i o n . c s s ”) . toExternalForm ()) ;
primaryStage . s e tScene (scene) ;
primaryStage . s e t T i t l e (”Demo JavaFX”) ;
primaryStage . show () ;
} catch (Exception e) {e . pr intStackTrace () ; }
}

p r i v a t e Node createToo lbar (){
re turn new ToolBar (new Button (”New”) , new Button (”Open”) ,

new Separator () , new Button (”Clean ”) , e t c) ;
}

p r i v a t e Node c r ea t eS ta tu sba r (){
HBox s ta tu sba r = new HBox () ;
s t a tu sbar . ge tChi ldren () . addAll (new Label (”Name : ”) ,

new TextFie ld (” ”) e t c .) ;
r e turn s ta tu sba r ;
}

p r i v a t e Node createMainContent (){
Group g = new Group () ;
// here you f i l l g with whatever Nodes you want
// us ing g . getChi ldren () . add (. . .)
r e turn g ;
}

e t c .
}

Figure 2: Building the component UI tree is simple: create a root node (here
a BorderPane), fill its various inner areas (top, bottom, center), then attach
it to a Scene and attach the Scene to the Stage.

4

”bin” folder where all compiled classes are located, and run the following
command:

java --module-path path-to-javafx-libraries-folder

--add-modules javafx.controls application.Main

4 Displaying text, images, 2D and 3D shapes

You can easily add text and 2D or 3D geometrical shapes to your interface
by creating the appropriate object (e.g., a Line) and adding it to a parent
container. This container may either be a :

• Group (in which case it just acts as a way to maintain a link between
every node belonging to it, for example, if you add a Transform to a
Group, then every node in the group undergoes this transform)

• Or a sophisticated container, like e.g. BorderPane, that can also layout
its children neatly on the screen, in particular because it takes care of
how its dimension influences the layout.

Figure 3 shows a basic code block for adding text. Literally every pa-
rameter in the Text object can be tweaked, from font size to stroke color and
width. Changes are reflected immediately on the screen through a hidden
event signaling mechanism. Styling can also be specified using the associated
CSS style sheet, using the ”.text” class.

The package javafx.scene.shape contains a lot of 2D shapes, from lines
to circles to Bezier splines. It also includes classes dedicated to 3D graph-
ics (boxes, spheres, cylinders) which, when associated with transforms (see
package javax.scene.transform), makes it possible to build complicated
3D worlds. More information is available in the API document of javafx,
http://docs.oracle.com/javase/8/javafx/api/toc.htm.

Figure 4 shows how to add a single line to your interface. Here again
you may either want to add it to a parent group, or to a more sophisticated
container.

Finally, it is also possible to add images, videos or sound directly to your
scene by creating the appropriate objects and wrapping them into a parent
group. Adding an image is quite straightforward, and is exemplified in Fig-
ure 5. Just create an Image with the appropriate image URL (many format
are supported, but PNG is the preferred one), wrap it into an ImageView

(which is the node responsible for rendering the image to the screen), set the
ImageView parameters so that the image has the correct location and size
on screen, possible add an effect to the image by attaching an effect object
(see javafx.scene.effect package), and finally attache the ImageView to
a parent group, as always.

5

http://docs.oracle.com/javase/8/javafx/api/toc.htm

Text text = new Text (”Text can\ ns t radd l e two l i n e s ”) ;
t ex t . setTextAlignment (TextAlignment . JUSTIFY) ;
t ex t . setFont (Font . f ont (”Times New Roman” ,

FontWeight .BOLD, FontPosture .REGULAR, 4 0)) ;
t ex t . s e t F i l l (Color .CYAN) ;
t ex t . setStrokeWidth (2) ;
t ex t . s e tS t roke (Color .BLACK) ;
t ex t . s e tUnder l i ne (t rue) ;
t ex t . setX (5 0) ;
t ex t . setY (1 5 0) ;
. . . (then add to parent group)

Figure 3: Adding text to your interface reduces to instanciating a Text

object, setting its font, location, stroking and alignement properties, and
adding it to a Group or any other type of parent node (e.g., a Borderpane).

Line l i n e = new Line () ;
l i n e . se tStartX (3 0 0 . 0) ;
l i n e . se tStartY (1 5 0 . 0) ;
l i n e . setEndX (5 0 0 . 0) ;
l i n e . setEndY (1 5 0 . 0) ;
l i n e . s e tS t r oke (Color .GREEN) ;

Figure 4: Creating geometrical shapes is not much complicated: create a
shape using one of the many classes available in the javafx.geometry pack-
age, and add it to a parent container.

Image image = new Image (u r l o f PNG image) ;
ImageView imageView = new ImageView (image) ;
imageView . setX (5 0 0) ;
imageView . setY (7 0) ;
imageView . s e tF i tHe ight (2 0 0) ;
imageView . setFitWidth (4 0 0) ;
Glow glow = new Glow () ;
glow . s e t L e v e l (0 . 9) ;
imageView . s e t E f f e c t (glow) ;

Figure 5: To add an image to the UI, create an Image object, wrap it
into an ImageView, possibly add visual effets like Glow (or any other in the
javafx.scene.effect package), and finally add the ImageView to a parent
container.

6

import j ava fx . scene . input . MouseEvent ;
. . .
node . setOnMouseClicked (

new EventHandler<MouseEvent>() {
pub l i c void handle (MouseEvent e) {

System . out . p r i n t l n (”mouse c l i c k ! ”) ;
}

}) ;
}

Figure 6: Handling events in JavaFX: it is enough to just attach an event
handler to a (visible) node to capture any event occuring on this node (a
button, a shape, a piece of text, etc).

5 Adding widgets and handling events

Figure 6 and 7 show how to implement a simple UI with ”widgets” (but-
tons, menus, etc) and how to handle events triggered on them by a mouse
click. The approach is very similar to Swing, since in Swing components
were already handled by a ”component graph” made up of leaves and nodes.
Those used to Swing will surely recognize the familiar Button and Grid-

Pane objects: as it turns out they work pretty much like in Swing and you
can seamlessly translate a piece of Swing code into a piece of JavaFX code
with minimum effort. Mouse and keyboard events are handled using Even-

tHandler objects with appropriate filters (here a MouseEvent filter), and
bear strong resemblance with Swing’s ActionListener’s.

7

Text txt = new Text (”Password ”) ;
PasswordField pa s sF i e ld = new PasswordField () ;
Button button = new Button (”Submit ”) ;

GridPane gridPane = new GridPane () ;
gridPane . setMinSize (400 , 2 0 0) ;
gridPane . setPadding (new I n s e t s (10 , 10 , 10 , 1 0)) ;
gridPane . setVgap (5) ;
gridPane . setHgap (5) ;
gridPane . setAl ignment (Pos .CENTER) ;

gridPane . add (txt , 0 , 1) ;
gridPane . add (passFie ld , 1 , 1) ;
gridPane . add (button , 0 , 2) ;

button . s e t S t y l e (”−fx−background−c o l o r : d a r k s l a t e b l u e ”) ;

Figure 7: Basic steps for creating a UI with buttons and textfields.

8

	Installing things
	A basic application
	Running a JavaFX app from the command line
	Displaying text, images, 2D and 3D shapes
	Adding widgets and handling events

